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a b s t r a c t

The scattering problem of a time-harmonic electromagnetic wave from a perfect electric
conductor (PEC) coated with materials is considered, and solved by coupling a finite ele-
ment method with an integral equation prescribed on the outer boundary of the computa-
tional domain. To reduce the numerical complexity, a one-dimensional domain
decomposition method (DDM) is employed: the computational domain is partitioned into
concentric subdomains (SDs), and Robin transmission conditions (TCs) are prescribed on
the interfaces. For some configurations and/or materials, the convergence of the corre-
sponding DDM algorithm happens to be slow. A possible remedy is to enhance the effi-
ciency of the TCs by approximating the exact ones more accurately. To this end, we first
consider the simplified 2D problem of a circular PEC cylinder with an homogeneous coating
and up to four SDs with circular interfaces, thus allowing to obtain the exact TCs in closed-
form. Approximate local or non-local TCs are derived from these exact ones, and numerical
examples demonstrate their superiority over the standard Robin TCs. Then, the case of an
elliptical PEC cylinder with one interface in free-space is investigated. Also, the issues per-
taining to the uniqueness of the solutions and convergence of the algorithm are addressed.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

The scattering problem of a time-harmonic electromagnetic wave from complex 3D inhomogeneous objects embedded in
free-space can be accurately solved by coupling a finite element method (FEM) with an integral equation (IE) prescribed on
the outer boundary of the computational domain. For electrically large objects, a domain decomposition method (DDM)
allows a considerable reduction of its numerical complexity by decomposing the initial problem into several coupled
subproblems that are solved independently. Such an hybrid DDM has been presented in [1–3] that is based, essentially,
on the DDM proposed by Després et al. [4]: the subdomains (SDs) are coupled via a Robin transmission condition (TC) that
ensures the uniqueness of the solutions and the convergence of the iterative algorithm. In [1,2], the convergence is acceler-
ated by partitioning the computational domain into concentric SDs (onion-like partition), and Després’ DDM algorithm has
been modified accordingly. However, for a perfect electric conductor (PEC) coated with materials, it may happen that this
algorithm converges rapidly when the first (innermost) interface is located in free-space only. For an electrically large object
and high index materials, this entails a prohibitively large number of volume unknowns inside the first SD.

A possible way to overcome this problem is to employ FETI-like methods [5–13]: the interior unknowns in each SD are
eliminated by performing a Schur complement, and only the resulting system with the unknowns on the interfaces between
the SDs is considered. This allows a reduction of the memory size and the use of a Krylov iterative solver. However, the size of
. All rights reserved.
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this system may still be very large, preconditioning is generally necessary, and uniqueness of the solutions is not always
guaranteed. Another possibility is to enhance the performances of Després’ original TCs. Without pretending to be exhaus-
tive, we may mention numerical TCs [8,18], second order TCs – that involve second order tangential derivatives of the fields
on the interfaces – [15,7,16,23], and zero order TCs defined for the two following model problems: unbounded homogeneous
medium with a planar interface [17,23], and a 2D coated PEC circular cylinder with one circular interface located in free-
space [19], the solution of which is also easily obtained in closed-form. In both cases, Després’ algorithm only is considered.

In this paper, we complexify the latter 2D model by adding one or two interfaces inside the coating, in order to approach
more closely a real-world problem. Besides, the onion-like (1D) DDM algorithm [15] is employed, that is known to converge
more rapidly than the one originally proposed by Després. The model problem with two interfaces is presented in Section 2,
together with the definitions of the exact TCs, of the global system reduced to the unknowns on the interface, and of the
radius of convergence of the algorithm. The performances of the approximate TCs proposed, e.g., in [17,19] are investigated
in Section 3, as well as those of the relaxed algorithm in [15]; also, the issues pertaining to the uniqueness of the solutions
and convergence of the algorithm are addressed. More efficient TCs are presented and numerically evaluated in Section 4,
and the influence of an additional TC on the convergence is investigated in Section 5. The case of an elliptical PEC cylinder
with two free-space subdomains only is investigated in Section 6, and conclusions are proposed in Section 7.

2. Model problem: 2D circular cylinders

We consider the 2D geometry (translationally invariant along z) sketched in Fig. 1. It is embedded in free-space and illu-
minated by the plane wave uinc ¼ eik0x where k0 = 2pf/c is the free-space wave number (c is the light velocity), and the time
dependence expð2ipftÞ is assumed and suppressed throughout. The Helmholtz equation Du + k2u = 0 is solved with an exact
radiation condition at infinity – for example an IE – and k ¼ k0

ffiffiffiffiffiffi
�lp where �, l are the relative permittivity and permeability

of the material, being both equal to one in free-space. S0 is the surface of a PEC:
Fig. 1.
The nor
TM : uðS0Þ ¼ 0; TE : @nuðS0Þ ¼ 0 ð1Þ
u is the total field, equal to Ez (g0Hz) in TM (respectively TE) polarization (E, H are the electric and magnetic fields and g0 is
the free-space impedance); @n stands for n.r where n is the outward normal to S0. This problem is representative of a real-
world one: a TC on S1 inside the material and another one on S3 for the hybridization with the IE in free-space [1,2]. An addi-
tional interface located inside the material will be considered in Section 5. A general solution of the Helmholtz equation in
polar coordinates is
uðr; hÞ ¼
Xþ1

m¼�1
½amJmðkrÞ þ bmHmðkrÞ�eimh ð2Þ
where JmðxÞ;HmðxÞ � Hð2Þm ðxÞ are the Bessel and Hankel functions of order m, and k = k0 for r P R2. Note that
eik0x ¼

Pþ1
m¼�1imJmðk0rÞeimh implies
a�m ¼ ð�1Þmam b�m ¼ ð�1Þmbm ð3Þ
2.1. Exact solution

The coefficients for the exact solution that will serve as a reference are:
S0

S1

S2

S3

ε=μ=1ε, μ

y

x

n ζ

Ri is the radius of circle Si, 0 6 i 6 3. S0 is a PEC surface; � and l are constant for R0 6 r 6 R2 and � = l = 1 for r P R2. TCs are prescribed on S1 and S3.
mals n to the circles are all oriented outward. The arrow represents a ray tangent to S2 and incident on S3 with the angle f (see Section 4.1.4).
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R0 6 r 6 R2 : bex
m ¼ �

2imþ1

pk0R2umvmð1� smÞ
; aex

m ¼ �umbex
m

r P R2 : bex
m ¼

imd0mð1� s0mÞ
umvmð1� smÞ

; aex
m ¼ im

ð4Þ
where
TM : um ¼
HmðkR0Þ
JmðkR0Þ

; TE : um ¼
H0mðkR0Þ
J0mðkR0Þ

J0mðxÞ ¼
d
dx

JmðxÞ; H0mðxÞ ¼
d
dx

HmðxÞ
ð5Þ
and, in TE:
vm ¼ gJ0mðkR2ÞHmðk0R2Þ � JmðkR2ÞH0mðk0R2Þ; g ¼
ffiffiffiffiffiffiffiffiffi
l=�

p
v0m ¼ gJ0mðkR2ÞJmðk0R2Þ � JmðkR2ÞJ0mðk0R2Þ
dm ¼ gH0mðkR2ÞHmðk0R2Þ � HmðkR2ÞH0mðk0R2Þ
d0m ¼ gH0mðkR2ÞJmðk0R2Þ � HmðkR2ÞJ0mðk0R2Þ

sm ¼
dm

umvm
; s0m ¼

umv0m
d0m

ð6Þ
The corresponding formulas in TM are obtained from (6) by interchanging � and l (then g is replaced by 1/g); this rule
applies in all what follows.

2.2. Exact transmission conditions. Global system reduced to the unknowns on the interfaces

The DDM algorithm in [2] writes, at iteration ‘,
S1 : Tþu‘1 ¼ ð1�x‘ÞTþu‘�1
1 þx‘T

þu‘�1
2

T�u‘2 ¼ T�u‘1
S3 : Tþu‘3 ¼ ð1�x‘ÞTþu‘�1

3 þx‘T
þu‘�1

4

T�u‘4 ¼ T�u‘3

ð7Þ
x‘ is the relaxation parameter (1/2 6x‘ 6 1), T± are the operators that define the TCs, and ui, 1 6 i 6 4, designate the solu-
tions for Ri�1 6 r 6 Ri (R4 =1). In [2], T± are identical on all the interfaces and write, in TE,
T�u ¼ @nu
�
� ik0u ð8Þ
(� = 1 on S3). These approximate TCs (termed henceforth standard TCs) guarantee the convergence [14] that may happen to
be slow, as mentioned in Section 1. It is accelerated via a better approximation of the exact TCs. An exact TC is a non-local
operator than can be defined as follows (in TE):
T�u ¼ @nu=�� Z�u; Z�uðhÞ ¼ 1
2p

Z 2p

0
Z�ðh; h0Þuðh0Þdh0

Z�ðh; h0Þ ¼
Xþ1

m¼�1
m�meimðh�h0Þ

ð9Þ
Because u is given by (2), we get Z�uðhÞ ¼
Pþ1

m¼�1m�m½amJmðkrÞ þ bmHmðkrÞ�eimh for r = R1,R3. Since
@nuðhÞ=� ¼ k0g

Pþ1
m¼�1½amJ0mðkrÞ þ bmH0mðkrÞ�eimh, the exact TCs in (7) write:
S1 : a‘1m þ wþ1mb‘1m ¼ ð1�x‘Þða‘�1
1m þ wþ1mb‘�1

1m Þ þx‘ða‘�1
2m þ wþ1mb‘�1

2m Þ; a‘2m þ w�1mb‘2m ¼ a‘1m þ w�1mb‘1m ð10Þ
S3 : a‘3m þ wþ3mb‘3m ¼ ð1�x‘Þða‘�1

3m þ wþ3mb‘�1
3m Þ þx‘ðim þ wþ3mb‘�1

4m Þ; im þ w�3mb‘4m ¼ a‘3m þ w�3mb‘3m
where
w�1m ¼
gH0mðkR1Þ �

m�1m
k0

HmðkR1Þ

gJ0mðkR1Þ �
m�1m
k0

JmðkR1Þ
w�3m ¼

H0mðk0R3Þ �
m�3m
k0

Hmðk0R3Þ

J0mðk0R3Þ �
m�3m
k0

Jmðk0R3Þ
ð11Þ
In (10), because of the exact radiation condition, we have used the fact that coefficient a4m in (2) is the one, im, of the incident
wave. For the standard TCs, we have, in view of (8),
mþm ¼ m�m ¼ ik0 8m ð12Þ
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To obtain the global system reduced to the unknowns on the interfaces, the continuity of the tangential components of E and
H must be enforced on S2, viz., in 2D-TE, the continuity of u and @nu/� for r = R2 that yields:
a2mam þ b2m � a3mbm � b3mcm ¼ 0 a2ma0m þ b2m � a3mb0m � b3mc0m ¼ 0

am ¼
JmðkR2Þ
HmðkR2Þ

a0m ¼
J0mðkR2Þ
H0mðkR2Þ

bm ¼
Jmðk0R2Þ
HmðkR2Þ

b0m ¼
J0mðk0R2Þ
gH0mðkR2Þ

cm ¼
Hmðk0R2Þ
HmðkR2Þ

c0m ¼
H0mðk0R2Þ
gH0mðkR2Þ

ð13Þ
(1) implies a1m = � b1mum. Introducing vectors um ¼ ðb1m; a1m; b2m; a2m; b3m; a3m; b4mÞt and f m ¼ ð0;0;0;0;0; im
; imÞt then, when

x‘ = 1, the global system with the unknowns on the interfaces obtained from (10) – where the coefficients are ‘ independent
– and (13) writes AU = F where A is block-diagonal and um, fm are the components of U, F:
Amum ¼ f m 8m ð14Þ
with
Am ¼

um 1 0 0 0 0 0
wþ1m 1 �wþ1m �1 0 0 0
w�1m 1 �w�1m �1 0 0 0

0 0 1 am �cm �bm 0
0 0 1 a0m �c0m �b0m 0
0 0 0 0 wþ3m 1 �wþ3m

0 0 0 0 w�3m 1 �w�3m

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

ð15Þ
(14) yields the exact solution if:
detðAmÞ ¼ ðw�3m � wþ3mÞðw
þ
1m � w�1mÞ½umðamc0m � a0mcmÞ þ cm � c0m�–0 8m ð16Þ
2.3. Solution of the global system by the DDM algorithm

If x‘ = x is ‘ independent, then (10) is obtained if we set
Am ¼ Mm � Nm u‘m ¼M�1
m Nmu‘�1

m þM�1
m f m ð17Þ
with:
Mm ¼

um 1 0 0 0 0 0
wþ1m=x 1=x 0 0 0 0 0

w�1m 1 �w�1m �1 0 0 0
0 0 1 am �cm �bm 0
0 0 1 a0m �c0m �b0m 0
0 0 0 0 wþ3m=x 1=x 0
0 0 0 0 w�3m 1 �w�3m

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

ð18Þ

Nm ¼

0 0 0 0 0 0 0
wþ1mð1=x� 1Þ ð1=x� 1Þ wþ1m 1 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 wþ3mð1=x� 1Þ ð1=x� 1Þ wþ3m

0 0 0 0 0 0 0

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

ð19Þ
When x = 1, this is equivalent to a block Gauss–Seidel iterative solution of (14). The problem is well posed if
detðMmÞ ¼
wþ1m �um

x2 ðrþom � w�1mrþmÞw
�
3m–0 8m ð20Þ
where
r�om ¼ cm � c0m þ w�3mðb
0
m � bmÞ r�m ¼ a0mcm � amc0m þ w�3mðamb0m � a0mbmÞ ð21Þ



B. Stupfel / Journal of Computational Physics 229 (2010) 851–874 855
The algorithm converges if and only if
q ¼max
m

qm < 1 qm ¼max jkmj ð22Þ
where km is an eigenvalue of M�1
m Nm. In this case, and if the initial solution is set to zero (u0

m ¼ 0 for all m), we have:
u‘m ¼
X‘�1

n¼0

ðM�1
m NmÞnM�1

m f m ) u1m ¼ um ¼ ðI�M�1
m NmÞ�1M�1

m f m ð23Þ
(17) implies M�1
m Am ¼ I�M�1

m Nm, the eigenvalues of which are 1 � km. By definition, the TCs in (9) that are exact for (17) are
such that q = 0. In this case, the eigenvalues of M�1

m Am are equal to 1 for all m, and M constitutes an excellent preconditioner
for the solution of the global system AU = F via a Krylov iterative method.

The difference between u‘1 and u‘2 on S1 tends asymptotically to zero like q‘:
‘!1 : err‘1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ 2p

0
ju‘1ðR1; hÞ � u‘2ðR1; hÞj2dh

s
/ q‘ ð24Þ
The geometric convergence becomes arithmetic when q is very close to 1: q‘ ’ 1 � ‘(1 � q), thus explaining the possibly
slow convergence mentioned in Section 1 of the standard algorithm with (12).

When x = 1 (no relaxation), the non-zero km write:
km ¼
�b�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p
2a

a ¼ w�3mðum � wþ1mÞðw
�
1mrþm � rþomÞ

b ¼ wþ3mðum � wþ1mÞðr�om � w�1mr�mÞ þ w�3mðum � w�1mÞðrþom � wþ1mrþmÞ
c ¼ wþ3mðum � w�1mÞðw

þ
1mr�m � r�omÞ

ð25Þ
As a consequence, q = 0 if, for all m, c = b = 0 and a – 0 – (16) and (20) must also be verified – that entail the following expres-
sions for coefficients m�m in the exact TCs (then the algorithm converges in three iterations, i.e. the number of SDs):
S3 : wþ3m ¼ 0–w�3m () mþ3m ¼ �k0
H0mðkR1Þ
HmðkR1Þ

ð26Þ
and
S1 : w�1m ¼ um–wþ1m () m�1m ¼ k0g
J0mðkR1Þ � H0mðkR1Þ=um

JmðkR1Þ � HmðkR1Þ=um

wþ1m ¼ r1m –w�1m () mþ1m ¼ �k0g
H0mðkR1Þ � J0mðkR1Þr1m
HmðkR1Þ � JmðkR1Þr1m

ð27Þ
with
r1m ¼
cm � c0m

a0mcm � amc0m
ð28Þ
Only one of the two conditions in (27) must be satisfied. wþ3m ¼ 0–w�3m yields an exact TC on S3 since we get from (10) where
x‘ = 1:
wþ3m ¼ 0–w�3m ) a‘3m ¼ im
; b‘3m ¼ b‘4m ) u‘3 ¼ u‘4; @nu‘3 ¼ @nu‘4 ð29Þ
Similarly, w�1m ¼ um–wþ1m or wþ1m ¼ r1m –w�1m yields an exact TC on S1. Note that (26) is satisfied if R3 =1 and mþ3m ¼ m�3m ¼ ik0

for, if jmj is bounded,
jmj 6 Q : lim
R3!1

½H0mðk0R3Þ þ iHmðk0R3Þ� ¼ 0) lim
R3!1

wþ3m ¼ 0 ð30Þ
Also, we note that mþm and m�m, and hence T+ and T-, are polarization dependent, that implies anisotropic TCs.
We easily get from (25) the expressions of km in the two following particular cases:

� exact TC on S3:
wþ3m ¼ 0() km ¼
ðw�1m �umÞðw

þ
1m � r1m Þ

ðwþ1m �umÞðw
�
1m � r1m Þ

ð31Þ
� exact TC on S1:
w�1m ¼ um () km ¼
wþ3mðumr�m � r�omÞ
w�3mðumrþm � rþomÞ

ð32Þ
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The latter case is the model problem considered in [19] – only one TC on S3 – for the convergence of the non-relaxed (x = 1)
Després’ algorithm [14] that writes
Tþu‘3 ¼ Tþu‘�1
4 T�u‘4 ¼ T�u‘�1

3

and the corresponding non-zero eigenvalues are �
ffiffiffiffiffiffi
km
p

: we thus verify that this algorithm converges less rapidly than the
one in (7).

Note that (31) and (32) can also be obtained if we proceed as in Section 2.3: the corresponding matrix Am contains solely
the unknowns on both sides of S1 (b1m,a1m,b2m,a2m), or of S3 (b3m,a3m,b4m).

3. mþm ¼ m�m ¼ m for the TCs on S1 and S3

Setting mþm ¼ m�m and m independent [mþ1m ¼ m�1m ¼ m1; mþ3m ¼ m�3m ¼ m3 in (11)] is a simple option – the only one considered in
[17,19]. Unlike the standard ones in (12), these coefficients may have a non-zero real part: m = m0 + im00 with m0; m00 2 R. Actually,
it is known (see e.g. [17]) that m0 – 0 allows to act on evanescent waves that exist, for example, in the vicinity of a PEC
surface.

3.1. Simplified model problem: convergence of the DDM and uniqueness of the solutions in each SD

The problem is simplified as follows (see Fig. 1): S3 is suppressed and an absorbing boundary condition (ABC) is prescribed
on S2:
Tþu2 ¼ @nu2 þ m1u2 ¼ Tþuinc ð33Þ
In this section, S0, S1 and S2 have arbitrary shapes. It follows that the Helmholtz equation is solved inside the material only,
and u1, u2 are the solutions on each side of S1 on which are prescribed the TCs defined by the two first identities in (7), with
TE : T� ¼ @n

�
� m1 ð34Þ
and x‘ ¼ x 2 C. Adapting the proof in [14] to the algorithm in (7), we get in Appendix A, if e‘i ¼ u‘i � uex where uex is the exact
solution of this problem (R and I stand for real and imaginary parts) and E‘i , H‘

i designate the difference with the exact fields
of the fields computed at iteration ‘:
E‘ ¼
Z

S1

jTþe‘1j
2 þ

Z
S2

jTþe‘2j
2 ¼

Z
S1

jTþe‘1j
2

E‘ 6 ðjxj2 þ j1�xj2ÞE‘�1 � jxj2 m001B00‘�1 þ m01B0‘�1 þ 4jm1j2
Z

S2

je‘�1
2 j

2
� �

x ¼ 1 : E‘ ¼ E‘�1 � m001B00‘�1 þ m01B0‘�1 þ 4jm1j2
Z

S2

je‘�1
2 j

2
� �

B0‘ ¼ RðB‘Þ B00‘ ¼ IðB‘Þ B‘ ¼ 4ðA‘
1 þ A‘

2Þ

i ¼ 1;2 : A‘
i ¼ k2

0

Z
Xi

½��jE‘i j
2 � ljH‘

i j
2�; Ið�Þ;IðlÞ 6 0) B00‘ P 0

ð35Þ
In the first identity,
R

S2
jTþe‘2j

2 ¼ 0 because both u‘2 and uex satisfy (33). Also, X1 (X2) is the SD bounded by S0 and S1 (respec-
tively S1 and S2).

Regarding uniqueness conditions, Maxwell’s equations are solved in X1 (X2) with (1) and the first identity in (7) (respec-
tively (33) and the second identity in (7)) as boundary conditions. Uniqueness of the solutions is guaranteed if u‘i ¼ 0 when
the r.h.s. are zero, viz. Tþu‘1 ¼ 0 for u1 and T�u‘2 ¼ 0 for u2, and (34) writes on S1: @nu‘1=� ¼ �m1u‘1 and @nu‘2=� ¼ m1u‘2. Then, we
obtain from (81), with e‘i ¼ u‘i :
k2
0

Z
X1

½��jE‘1j
2 � ljH‘

1j
2� þ m1

Z
S1

ju‘1j
2 ¼ 0

k2
0

Z
X2

½��jE‘2j
2 � ljH‘

2j
2� þ m1

Z
S1

ju‘2j
2 þ

Z
S2

ju‘2j
2

� �
¼ 0

ð36Þ
Since Ið�Þ;IðlÞ 6 0, taking the imaginary part of these expressions yields:
m001 P 0) u‘1 ¼ u‘2 ¼ 0 ð37Þ
If m01 ¼ 0 and m001 P 0, (35) shows that jxj2 + j1 �xj2 6 1 is a sufficient condition of convergence
x ¼ x0 þ ix00 2 D ¼ fðx0 � 1=2Þ2 þx002 6 1=4g ) E‘ < E‘�1 ð38Þ
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and the DDM converges all the faster since losses (B00‘ > 0) are large: then, it may be advantageous to maximize jxj2 with
jxj2 + j1 �xj2 6 1, and numerical examples performed on this model problem show that x = 1 is a good trade-off.

If m01–0 and m001 P 0, we cannot conclude, except when �0l0 < 0 in which case (35) shows that the DDM always converges if
�0m01 > 0, even for a lossless material:
m001 P 0; x 2 D : �0l0 < 0; �0m01 > 0) E‘ < E‘�1 ð39Þ
These results can be extended to a 3D problem.
The global system reduced to the unknowns on interface S1 is, as in Section 2.2, block-diagonal and writes AU = F with

um ¼ ðb1m; a1m; b2m; a2mÞt , f m ¼ ½0;0; im
; imðJ0mðk0R2Þ þ m1

k0
Jmðk0R2ÞÞ=ðgJ0mðkR2Þ þ m1

k0
JmðkR2ÞÞ�t and
Am ¼

um 1 0 0
wþ1m 1 �wþ1m �1
w�1m 1 �w�1m �1

0 0 w2m 1

0
BBB@

1
CCCA ð40Þ
where
w2m ¼
gH0mðkR2Þ þ m1

k0
HmðkR2Þ

gJ0mðkR2Þ þ m1
k0

JmðkR2Þ
comes from the ABC (33) on S2, and detðAmÞ ¼ ðwþ1m � w�1mÞðum � w2mÞ. (17) yields the TC on S1 in (7) and (33) on S2; Mm = Am

except for the second row that writes ðwþ1m=x;1=x;0;0Þ, and Nm = 0 except for the second row that writes
ðwþ1mð1�xÞ=x; ð1�xÞ=x;wþ1m;1Þ. Then, the non-zero eigenvalues of M�1

m Nm are
km ¼ 1þxðk0
m � 1Þ k0

m ¼
ðum � w�1mÞðw

þ
1m � w2mÞ

ðum � wþ1mÞðw
�
1m � w2mÞ

ð41Þ
We find the same x dependency than in Després’ algorithm [6], and (41) shows that relaxation is inefficient if k0
m ’ 1. Now, if

we replace (7) by Després’ algorithm – that results from a block Jacobi iterative solution of (14) –
Tþu‘1 ¼ ð1�xÞTþu‘�1
1 þxTþu‘�1

2

T�u‘2 ¼ ð1�xÞT�u‘�1
2 þxT�u‘�1

1

ð42Þ
we get km ¼ 1þxð
ffiffiffiffiffiffi
k0

m

q
� 1Þ: again, as in Section 2.3, it shows that (42) converges less rapidly than (7).

3.2. Determination of the optimal m1 for the model problem

We come back to the model problem in Section 2, but an exact TC defined by (26) is prescribed on S3. This is realized if we
set R3 =1 and m�3m ¼ ik0, because of (30). To simplify, we consider the non-relaxed algorithm (x = 1): the km are then given
by (31). The issue is to determine the value m1opt of m1 that minimizes q as defined by (22). km is numerically minimized by
computing qðm01; m001Þ, that necessitates to truncate the series in (2).

3.2.1. Determination of the truncation parameter in (2)
In (2), 2Q + 1 terms only are kept (0 6 jmj 6 Q), and Q is such that the resulting error errRCS on the Radar Cross Section

(RCS), computed from S2, is lower than a prescribed value �RCS:
rexðhÞ ¼ bex
0 þ 2

X1
m¼0

imbex
m cos mh rQ ðhÞ ¼ bex

0 þ 2
XQ

m¼0

imbex
m cos mh

errRCS ¼
krex � rQk
krexk 6 �RCS

ð43Þ
bex
m is defined by the second identity in (4), k:k is the L2 norm and RCS(h) = 10log[4jr(h)j2/k0]. It is known [20,21] that:
Q ¼ nk0R2 n > 1; n ’ 1 ð44Þ
n is all the closer to one since k0R2 is large, and (44) is always satisfied in all what follows. Since the error is generally smaller
on the far-field than on the near-field, the one achieved on u(S0) is also calculated:
erru ¼
kuexðS0Þ � uQ ðS0Þk

kuexðS0Þk
ð45Þ
uex(S0) is computed from (2) with r = R0 and the coefficients am, bm defined in (4); uQ(S0) is computed from the truncated ser-
ies. Unless otherwise mentioned, �RCS = 5 � 10�3 in the following, that yields an error lower than 0.5 DB in [0,3600] for the
RCS, and erru < 10% for all the numerical examples that are presented. We note that the accuracy obviously increases with
Q: in a FEM, increasing Q is equivalent to a mesh refinement (see Section 6).
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3.2.2. Numerical results
(37) is enforced in order to ensure unique solutions for the subproblems in each of the SDs, and R0 = 1m throughout this

paper. We set
Fig. 2.
m. Solid
Q = 27;

Table 1
f = 1 GH
(q) is th

Mate

� = 2

� = 2
� = 2
� = 5
d1 ¼ R1 � R0 d2 ¼ R2 � R0 d3 ¼ R3 � R2
(here R2 is fixed and d3 =1). The results are shown for the less favorable TE polarization, because of the creeping (or eva-
nescent) waves that are less attenuated in a lossless dielectric than in TM. For a lossy material, Hm(x) (Jm(x)) decreases
(respectively increases) exponentially with x and, in order to avoid accuracy problems, small losses only are
considered. q(m), as defined in (22), is plotted in Fig. 2 for various materials – only non-negative values of m are considered,
on account of (3). The corresponding values of Q, m1opt, q, errRCS and erru are reported in Table 1 where k ¼ k0=

ffiffiffiffiffiffiffiffiffi
j�lj

p
is the

wavelength inside the material. We observe that q obtained with m1 = m1opt is always smaller than qstand calculated with
the standard coefficient m1 = ik0, especially for the lossless dielectric � = 2, l = 1. Also, increasing Q (and, hence, the numerical
accuracy) increases q and modifies the value of m1opt, that is frequency dependent (not shown). As expected from (39), q	 1
when m01 > 0 for � = 2 and l = �1 (we have verified that the same result is obtained for � = �2, l = 1 and m01 < 0). Finally, we
observe that q is smaller when losses are present (that implies B00‘ > 0), according to (35).

3.3. Influence of the relaxation on the standard algorithm

Let us come back to the model problem defined in Section 2, and let m�1m; m�3m satisfy (12); x 2 C and q(x0,x00) is computed
numerically. We have found that the value xopt of x that minimizes q may be located outside of the disk D defined by (38)
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m
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f = 1 GHz. The values of R1, R2 are indicated in the caption of Table 1. Plots of qstand(m) (left: mþ1m ¼ m�1m ¼ ik0) and q(m) (right: mþ1m ¼ m�1m ¼ m1opt) versus
line: � = 2, l = 1, Q = 28. Dotted line: � = 2, l = 1, Q = 32 (on the left, superimposed with the solid line for m 6 28); –�–: � = 2 � 0.1i, l = 1 � 0.1i,

–+–: � = 2, l = � 1, Q = 25; –
–: � = 5 � 0.1i, l = 2 � 0.1i, Q = 26.

z. Four first rows: R1 = 1.05m, R2 = 1.1m, (d2 = 0.47k,d1 = d2/2). Last row (� = 5 � 0.1i, l = 2 � 0.1i): R1 = 1.02m, R2 = 1.05m (d2 = 0.53k,d1 = d2/2.5). qstand

e radius of convergence obtained with mþ1m ¼ m�1m ¼ ik0 (respectively mþ1m ¼ m�1m ¼ m1opt).

rial Q m1opt qstand q errRCS erru

, l = 1 28 �4.7 + 1.6i 0.995 0.776 1.7 � 10�3 3.9 � 10�2

32 1.2 + 2.9i 1 � 10�5 0.98 6.2 � 10�7 1.9 � 10�4

� 0.1i, l = 1 � 0.1i 27 �2.3 + 8i 0.545 0.217 3.1 � 10�3 4.6 � 10�2

, l = � 1 25 16.5 + 1.1i 0.993 3.9 � 10�3 4.3 � 10�3 2.8 � 10�2

� 0.1i, l = 2 � 0.1i 26 �42 + 9.1i 0.643 6.7 � 10�2 1.8 � 10�3 2.6 � 10�2
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that guarantees q < 1, except for lossy materials for which xopt ’ 1, according to the analysis presented in Section 3.1.
Since xopt is not known a priori, a possible solution is to generate x‘ at random in [1/2,1] for each ‘ (with x1 = 1). Numerical
2D and 3D results have demonstrated the efficiency of this procedure [6,15,16], that is easily justified for the model problem
as follows. Let P‘

m denote the matrix M�1
m Nm where Mm, Nm are defined in (18) and (19) with x = x‘. Then it can be shown

analytically that the eigenvectors of M�1
m Nm that correspond to a non-zero eigenvalue k‘m are x‘ independent. As a result, the

algorithm in (7) converges if q ¼maxmj
Q‘

i¼1qi
mj < 1 (qi

m ¼max jki
mj) that may yield a lower value of q than the one obtained

with a fixed x. However, we have observed that the relaxed standard algorithm (7) with (12) is much less efficient than the
non-relaxed one with m1 = m1opt as defined in Section 3.2.2.

4. Improved TCs

We show in Section 4.1 that choosing mþm–m�m and m independent enhances the performances of the TCs. Still higher per-
formances are obtained in Section 4.2 with second order TCs, termed TC2, the numerical implementation of which in a FEM
has been presented for standard H(rot) tetrahedral edge elements in [16]. We set x‘ = 1 in all what follows.

4.1. mþm–m�m and m independent for the TCs on S1 and S3

4.1.1. Equivalence with the original problem without DDM, uniqueness and convergence
Here, T± in (7) writes, in TE:
S1 : T� ¼ @n

�
� m�1 S3 : T� ¼ @n � m�3 ð46Þ
The TCs are well posed (i.e. the DDM is equivalent to the original problem) if, when ‘?1, u‘ and @nu‘/� are continuous on S1

and S3 that, in view of (7) and (46), is realized if
i ¼ 1;3 : mþi þ m�i –0 ð47Þ
Regarding the uniqueness of the solutions in a SD, we consider, without loss of generality, the sourceless fields (E,H) in the
SD X bounded by S1 and S3. Consequently, we set u‘1 ¼ u‘�1

2 ¼ u‘�1
4 ¼ 0 in (7). If we set u ¼ u‘2 for R1 6 r 6 R2 and u ¼ u‘3 for

R2 6 r 6 R3, then (7) and (46) yield @nu=� ¼ m�1 u and @nu ¼ �mþ3 u as boundary conditions on S1 and S3, respectively, and the
energy conservation writes:
A ¼ k2
0

Z
X
½��jEj2 � ljHj2� ¼

Z
S3

u�@nu�
Z

S1

u�
@nu
�
¼ �mþ3

Z
S3

juj2 � m�1
Z

S1

juj2 ð48Þ
Because Ið�Þ;IðlÞ 6 0;IðAÞP 0, and the fields are zero in X if
m�001 P 0 mþ003 P 0 ð49Þ
On the other hand, we cannot conclude for the convergence of the algorithm.

4.1.2. Exact TC on S1

Interface S1 is suppressed: two SDs remain on each side of S3 (see Fig. 1), that amounts to consider the FEM-IE hybridiza-
tion in [2] only. Such is the case if Maxwell’s equations are solved exactly in the first SD (that includes all the materials) via
one of the methods mentioned in Section 1. The km are then given by (32) and are zero if umr�m � r�om ¼ 0 or else, because of
(21),
w�3m ¼ u0m () m�3m ¼ k0g
J0mðkR1Þ � H0mðkR1Þ=u0m
JmðkR1Þ � HmðkR1Þ=u0m

u0m ¼
cm � c0m þumðamc0m � a0mcmÞ
bm � b0m þumðamb0m � a0mbmÞ
For the particular case of free-space, (13) and (21) yield
� ¼ l ¼ 1) r�om ¼ w�3mr0m; r�m ¼ r0m ¼ a0m � am
and (32) writes:
km ¼
wþ3mðw

�
3m �umÞ

w�3mðw
þ
3m �umÞ
Hence km = 0 if, e.g., w�3m ¼ um, that implies
m�3m ¼ k0
J0mðk0R3Þ � H0mðk0R3Þ=um

Jmðk0R3Þ � Hmðk0R3Þ=um



Table 2
f = 1 GHz, exact TC on S3 and TC (46) on S1. qstand ¼ qðmþ1 ¼ m�1 ¼ ik0Þ; qopt ¼ minmþ01 ;mþ001 ;m�01 ;m�001

qðmþ01 ; m
þ00
1 ; m�01 ; m�

00
1 Þ ¼ qðmþ1opt ; m�1optÞ; qap ¼ qðmþ1ap; m�1apÞ; q is computed

from (22) and (31). The numbers inside brackets indicate the formula that is employed to calculate m�1ap .

� = 2, l = 1, d2 = 0.47k; Q = 28 � = 2 � 0.1i, l = 1 � 0.1i, d2 = 0.47k,
d1 = d2/2 (50); Q = 27

� = 5 � 0.1i, l = 2 � 0.1i, d2 = 0.53k,
d1 = d2/2.5 (50); Q = 26

d1 = d2/10 (50) d1 = d2/2 (50) d1 = d2/1.4 (51)

mþ1opt �3.7 + 13i 2.5 � 0.2i 5.2 + 0.23i 0.45 + 10.4i �3.2 + 11.8i

mþ1ap �3.4 + 13.2i 0.15 + 8.9i 5.4 + 0.067i 0.8 + 10.3i �4.4 + 13.5i

m�1opt �0.55 + 0.012i �15.7 + 3.4i �15 + 35i �5.8 + 4.7i �33.7 + 6.3i

m�1ap �0.51 �3.6 20.96i = ik0 �4.7 + 4.1i �32 + 5.6i

qstand 0.996 0.995 0.994 0.54 0.64
qopt 0.076 0.48 0.43 0.08 0.017
qap 0.087 0.71 0.44 0.12 0.033

860 B. Stupfel / Journal of Computational Physics 229 (2010) 851–874
If k0R3 ’ k0R0 then, because of the definition of um in (5), we get m�3m ’ 0 in TE and m�3m � k0 in TM, i.e. a quasi-exact TC since
m�3m is almost m independent.

4.1.3. Determination of the optimal values of mþ1 ; m�1 with an exact TC on S3

An exact TC is prescribed on S3 (e.g., mþ3 ; m�3 satisfy (12) and R3� R2) in which case the km are given by (31). Minimizing
analytically km with respect to the real and imaginary parts of mþ1 ; m�1 is not straightforward. For this reason, we adopt an heu-
ristic approach, justified in Appendix B, that gives the following approximate values m�1ap; mþ1ap for m�1 ; mþ1 that minimize q –
D(x) is defined by (82) –:
1 See
8x 2 ½0;Q �; DðxÞ–0 : m�1ap ¼ m�1Q ¼ k0g
J0Q ðkR1ÞuQ � H0Q ðkR1Þ
JQ ðkR1ÞuQ � HQ ðkR1Þ

mþ1ap ¼ �
k0g
Q

XQ

m¼0

H0mðkR1Þ � J0mðkR1Þr1m
HmðkR1Þ � JmðkR1Þr1m

ð50Þ

9x 2 ½0;Q � n DðxÞ ¼ 0 : m�1ap ¼ ik0

mþ1ap ¼ mþ1Q ¼ �k0g
H0Q ðkR1Þ � J0Q ðkR1Þr1Q
HQ ðkR1Þ � JQ ðkR1Þr1Q

ð51Þ
In the first case (50), the numerical results show that the value of m�1ap governs q (m�1 acts on the evanescent modes m ’ Q),
whereas it is the opposite for (51). Note (see Appendix B) that D(x) is likely to be different from zero (i) if there are losses and
(ii) for a lossless material, if the location of S1 is such that (83) is not satisfied. As in the previous section, when jkjR1 ’ jkjR0,
(50) implies m�1 ’ 0 in TE and m�1 � k0 in TM that guarantee a fast convergence. Finally, from (5) and because of the definition
Hm(x) = Jm(x) � iYm(x), we note that (50) implies m�1ap 2 R when �;l 2 R and, hence, (49) is satisfied.

We have numerically computed the values, mþ1opt and m�1opt , of mþ1 and m�1 that minimize qðmþ01 ; m
þ00
1 ; m�01 ; m�

00
1 Þ. The correspond-

ing results are presented in Table 2 and Fig. 3 for f = 1 GHz, R3 = 100m and in TE polarization (the less favorable, because of
the creeping waves) that lead to the following conclusions. (i) These TCs actually perform better than those with mþ1 ¼ m�1 in
the same configurations (compare with Table 1 and Fig. 2). (ii) (50) and (51) constitute reasonable approximations of m�1opt –
that implies qap ’ qopt (these quantities are defined in the caption of Table 2) – except, for a lossless material, in the tran-
sition zone between D(x) – 0 and D(x) = 0 that, because of (83), corresponds here to d1 = k/4. (iii) We have verified that m�1
(mþ1 ) governs the convergence when R1 is close to R0 (respectively R2). This means, for example, that when kR1 ’ kR0, qopt

is almost independent of mþ1 as long as m�1 ’ 0. The plots of qap in Fig. 3 clearly show the action of the TC on the evanescent
waves: qap(Q)	 1.

4.1.4. Approximate TCs on S1 and S3

Both TCs on S1 and S3 are now defined by (46), and the resulting km by (25). If (50) and (51) constitute good approxima-
tions of the exact TC on S1, then the km are approximately given by (32) that are zero if wþ3m ¼ 0 and hence, on account of (11),
if mþ3m ¼ �k0H0mðk0R3Þ=Hmðk0R3Þ. Numerical results show that the following values of the coefficients, that do not depend on
m, yield satisfying results:
mþ3ap ¼ �
k0

Q

XQ

m¼0

H0mðk0R3Þ
Hmðk0R3Þ

m�3ap ¼ ik0 ð52Þ
Since1 m�03ap > 0, mþ3ap and m�3ap satisfy (49). When k0R3 > k0R2 + O[k0R2)1/3], i.e. when S3 is outside of the evanescent region, we eas-
ily get in Appendix C the following ‘‘geometrical” approximation for mþ3ap:
Appendix C; also, mþ03ap > 0, because R
H0m ðk0 R3 Þ
Hm ðk0 R3 Þ

h i
< 0 [19].



0 10 20
10−3

10−2

10−1

100

m
0 10 20

10−3

10−2

10−1

100

m

Fig. 3. f = 1 GHz, exact TC on S3 and TC (46) on S1. Same parameters than in Table 2; q is computed from (22) and (31). Left: qoptðmÞ ¼ qðmþ1opt ; m�1optÞ versus m.
Right: qapðmÞ ¼ qðmþ1ap; m�1apÞ versus m. Solid line: � = 2, l = 1, d1 = d2/10. Dashed line: � = 2, l = 1, d1 = d2/2; –�–: � = 2, l = 1, d1 = d2/1.4; –
–: � = 2 � 0.1i,
l = 1 � 0.1i, d1 = d2/2; –+–: � = 5 � 0.1i, l = 2 � 0.1i, d1 = d2/2.5.
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mþ03ap ’
1

2R2
arcth sin f > 0 mþ003ap ’

k0

2
cos fþ f

sin f

� �
> 0 f ¼ arcsin

R2

R3
ð53Þ
In high frequency electromagnetics, f is the angle of incidence on S3 of a ray tangent to S2 (see Fig. 1): as a consequence, it is
the maximum angle of incidence on S3 of a ray reflected by S2, or creeping on S2. Also, we note that (52) and (53) yield the
expected value when R3 is large, i.e., limR3!1mþ3ap ¼ ik0. Finally, we may use this value of mþ3ap to get an efficient ABC on S3 that
writes – see (33) – ð@n þ mþ3apÞu4 ¼ ð@n þ mþ3apÞuinc. Actually, wþ3m ¼ 0 is the definition of an exact ABC on S3, because of (29).

Figs. 4–6 display the performances of these new TCs (only the polarizations that yield the worst results are shown). As
mentioned before, we observe that they are less efficient for a lossless material and for the values of d1/k given by (83) that
yield D(m) ’ 0 – except when R1 ’ R0 in TM. Figs. 7 and 8 show that approximation (53) is reasonable. Also, mþ001ap > 0 (not
shown for � = 5, l = 2), that entails unique solutions in the first SD bounded by S0 and S1 (see Section 4.1.1) – uniqueness
of the solutions in the second SD is guaranteed since m�001ap P 0. Let us mention that numerical results show that implementing
the TC (46) on S3 only is not efficient.
4.2. Second order TCs (TC2s) on S1 and S3

The TC2s involve second order tangential derivatives of the fields on the interfaces. The operators T± defined in (7) and
implemented in 2D in [15] write, on interface S3 (e.g.),
T� ¼ @n � ðm31 þ m32@
2
l Þ

m31 ¼ ik0

1� 3i
2k0R3

� 3
8ðk0R3Þ2

1� i
k0R3

" #
m32 ¼

i

2k0 1� i
k0R3

� � ð54Þ
where l designate the curvilinear abscissa and @l the partial derivative with respect to l. These TC2s, as well as their 3D coun-
terpart [16], yield good results in free-space. However, for this model problem, we have observed that they are inefficient in a
lossless material.

We set, as in Section 4.1, mþ31–m�31; mþ32–m�32 and, for S1; mþ11–m�11; mþ12–m�12. Then operators T± write:
S1 : T� ¼ @n

�
� ðm�11 þ m�12@

2
l Þ S3 : T� ¼ @n � ðm�31 þ m�32@

2
l Þ ð55Þ



Fig. 5. � = 5, l = 2, f = 1 GHz, R2 = 1.1m (d2 = 1.06k), TE. Same caption as in Fig. 4.

Fig. 4. � = 2, l = 1, f = 1 GHz, R2 = 1.1m (d2 = 0.47k), TM. min(1,q) versus d1/k and d3/k0. Left: standard TC on S1 and S3 (mþ1m ¼ m�1m ¼ mþ3m ¼ m�3m ¼ ik0). Middle:
TC (46) on S1 with m�1m ¼ m�1ap computed from (50) or (51), and standard TC on S3 (mþ3m ¼ m�3m ¼ ik0). Right: TC (46) on S1 and S3 with m�1m ¼ m�1ap computed from
(50) or (51), and m�3m ¼ m�3ap computed from (52). Dark red: min(1,q) = 1; Dark blue: min(1,q) = 0. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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For the model problem, because @l = @h/R on a circle of radius R, this amounts to set in (11):
m�im ¼ m�i1 �
m2m�i2

R2
i

i ¼ 1;3 ð56Þ
Coefficients m�i2 act on evanescent waves, as it can be observed for the TC2 on S3 defined by (54): if k0R3� 1, then
m�3m ’ ik0½1� m2

2ðk0R3Þ2
�, the difference of which with ik0 is maximum for m = Q ’ k0R2.

Regarding the uniqueness of the solutions in each SD, (48) yields, after integration by parts,
A ¼ k2
0

Z
X
½��jEj2 � ljHj2� ¼ �mþ31

Z
S3

juj2 � m�11

Z
S1

juj2 þ mþ32

Z
S3

j@luj2 þ m�12

Z
S1

j@luj2 ð57Þ
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Fig. 7. Same caption as in Fig. 4. Left: TC on S1; m�1ap (50) and (51) versus d1/k. Right: TC on S3; m�3ap (52) (solid lines) and its geometrical approximation (53)
(dashed lines) versus d3/k0.

Fig. 6. � = 5 � 0.1i, l = 2 � 0.1i, f = 1 GHz, R2 = 1.1m (d2 = 1.06k), TE. Same caption as in Fig. 4.
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and, because IðAÞP 0, uniqueness is guaranteed if:
m�0011 P 0 mþ0031 P 0 m�0012 6 0 mþ0032 6 0 ð58Þ
We cannot conclude for the convergence of the algorithm.
We proceed as in Section 4.1.3 (see also Appendix B) to determine the approximate values of the parameters

m�i1; m�i2 ði ¼ 1;3Þ that minimize q. For the TC2 on S1, we consider the case where the TC on S3 is exact, i.e. we attempt to min-
imize km defined by (31). To this end, we set w�1m ¼ um and wþ1m ¼ r1m for m = Q, in other words, we enforce the TC2 to act
mainly on the evanescent waves. Then (11) and (56) imply:
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Fig. 8. Same caption as in Fig. 6. Left: TC on S1; m�1ap (50) and (51) versus d1/k. Right: TC on S3; m�3ap (52) (solid lines) and its geometrical approximation (53)
(dashed lines) versus d3/k0.
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mþ12ap ¼
R2

1

Q 2 k0g
H0Q ðkR1Þ � J0Q ðkR1Þr1Q
HQ ðkR1Þ � JQ ðkR1Þr1Q

þ mþ11ap

" #

m�12ap ¼ �
R2

1

Q 2 k0g
J0Q ðkR1ÞuQ � H0Q ðkR1Þ
JQ ðkR1ÞuQ � HQ ðkR1Þ

þ m�11ap

" #

m�11ap ¼ m�1ap

ð59Þ
m�1ap are defined2 by (50). For the TC2 on S3, we consider the case where the TC on S1 is exact, i.e. we attempt to minimize km

defined by (32). We set wþ3m ¼ 0 for m = Q, i.e. we choose mþ32 ¼ mþ32ap such that the TC2 acts essentially on the evanescent waves.
Because of (11) and (56), we get
m�31ap ¼ m�3ap; mþ32ap ¼
R2

3

Q 2 k0
H0Q ðk0R3Þ
HQ ðk0R3Þ

þ mþ31ap

" #
; m�32ap ¼

i
2k0ð1� i

k0R3
Þ

ð60Þ
where m�3ap are defined by (52). We have observed numerically that the performance of the TC2 on S3 depends but slightly on
m�32ap that is consequently set to the value defined in (54). If Debye’s approximation (85) is employed to evaluate mþ32ap, then
we get mþ0032ap > 0 and the sufficient uniqueness condition (58) is not satisfied in any SD – we obtain the same result for m32

defined by (54). Actually, (60), (86) and (53) imply, with Q ’ k0R2:
mþ32ap ’
1

2k0 sin2 f

1
k0R2

arcth sin f� sin f
cos2 f

þ i
f

sin f
� cos f

� �� �
We deduce from this expression that 1=ð3k0Þ 6 mþ0032ap 6 p=ð4k0Þ; since mþ0032apðfÞ is an increasing function of f in [0,p/2], it is
strictly positive. As in Section 4.1.4, we note that these values of mþ31ap; m

þ
32ap define a more performing second order ABC

on S3 than the one in (54).
Numerical results (not shown) show that the new TC2, implemented on S3 only, enhances the efficiency of the TC on S1

defined in Section 4.1.4. Figs. 9–11 demonstrate the superior performances of the TC2 defined by (55), (59), (60) that are
implemented either on S1 only, or on both S1 and S3 (compare to Figs. 4–6).
erical results show that satisfying results are obtained if m�11ap is computed from (50) even when D(x) has a zero in [0, Q].



Fig. 9. � = 2, l = 1, f = 1 GHz, R2 = 1.1m (d2 = 0.47k), TM. min(1,q) versus d1/k and d3/k0. Left: standard TC2 (54) on S1 and S3. Middle: TC2 (55) and (59) on S1,
and standard TC2 (54) on S3. Right: TC2 (55) on S1 and S3, and (59) on S1, (60) on S3.

Fig. 10. � = 5, l = 2, f = 1 GHz, R2 = 1.1m (d2 = 1.06k), TE. Same caption as in Fig. 9.
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5. An additional interface

An additional interface S12 of radius R12 is located inside the material between S1 and S2 (R1 < R12 < R2). Following along the
same lines than in Section 2.2, we get (14) with um = (b1m,a1m,b21m,a21m,b22m,a22m,b3m,a3m,b4m)t and fm = (0,0,0,0,0,0,0, im, im)t
S1 : a‘1m þ wþ1mb‘1m ¼ a‘�1
21m þ wþ1mb‘�1

21m

a‘21m þ w�1mb‘21m ¼ a‘1m þ w�1mb‘1m

S12 : a‘21m þ wþ12mb‘21m ¼ a‘�1
22m þ wþ12mb‘�1

22m

a‘22m þ w�12mb‘22m ¼ a‘21m þ w�12mb‘21m ð61Þ

w�12m ¼
gH0mðkR12Þ �

m�12m
k0

HmðkR12Þ

gJ0mðkR12Þ �
m�12m

k0
JmðkR12Þ
The TC on S3 in (10) is unchanged, as well as (13). This yields



Fig. 11. � = 5 � i0.1, l = 2 � i0.1, f = 1 GHz, R2 = 1.1m (d2 = 1.06k), TE. Same caption as in Fig. 9.
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Am ¼

um 1 0 0 0 0 0 0 0
wþ1m 1 �wþ1m �1 0 0 0 0 0
w�1m 1 �w�1m �1 0 0 0 0 0

0 0 wþ12m 1 �wþ12m �1 0 0 0
0 0 w�12m 1 �w�12m �1 0 0 0
0 0 0 0 1 am �cm �bm 0
0 0 0 0 1 a0m �c0m �b0m 0
0 0 0 0 0 0 wþ3m 1 �wþ3m

0 0 0 0 0 0 w�3m 1 �w�3m

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

ð62Þ
for matrix Am in (14), and
Mm ¼

um 1 0 0 0 0 0 0 0
wþ1m 1 0 0 0 0 0 0 0
w�1m 1 �w�1m �1 0 0 0 0 0

0 0 wþ12m 1 0 0 0 0 0
0 0 w�12m 1 �w�12m �1 0 0 0
0 0 0 0 1 am �cm �bm 0
0 0 0 0 1 a0m �c0m �b0m 0
0 0 0 0 0 0 wþ3m 1 0
0 0 0 0 0 0 w�3m 1 �w�3m

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

Nm ¼

0 0 0 0 0 0 0 0 0
0 0 wþ1m 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 wþ12m 1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 wþ3m

0 0 0 0 0 0 0 0 0

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA
for the (unrelaxed) block Gauss–Seidel decomposition (17) of Am. The objective here is to investigate the influence of this
additional interface on the convergence of the algorithm defined by (17). To facilitate the closed-form derivation of the
eigenvalues k12m of M�1

m Nm, we set wþ3m ¼ 0, viz. an exact TC is prescribed on S3. Then, the non-zero k12m write:



Fig. 12.
(50) an
(dashed
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k12m ¼ ð�b�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4c

q
Þ=2

b ¼ 1
w�1m � wþ12m

ðum � w�1mÞðw
þ
12m � wþ1mÞ

um � wþ1m

þ ðw
þ
12m � r1m Þðw

�
12m � w�1mÞ

w�12m � r1m

	 


c ¼ ðw
þ
12m � r1m Þðum � w�1mÞðw

�
12m � wþ1mÞ

ðum � wþ1mÞðw
�
12m � r1m Þðw

þ
12m � w�1mÞ

ð63Þ
q12 = maxm(maxjk12mj) designates the corresponding radius of convergence of (17), as opposed to q in (22) obtained without
the S12 interface. The problem is well posed if det(Am) – 0 that, in view of (62), implies wþ12m–w�12m. Because of (31), the exact
TC on S1 is obtained if w�1m ¼ um or wþ1m ¼ r1m , and (63) shows that q12 = 0 if wþ12m ¼ r1m or w�12m ¼ um in the former case, and
wþ12m ¼ r1m in the latter. It is noteworthy that w�12m ¼ w�1m yields k12m ¼

ffiffiffiffiffiffi
km
p

where km is defined by (31), so that
wþ3m ¼ 0; w�12m ¼ w�1m ) q12 ¼
ffiffiffiffi
q
p ð64Þ
This identity illustrates the well-known fact that the convergence of the DDM algorithm is slowed down when an additional
interface is introduced.

Numerical experiments performed with m�1m ¼ m�1ap as defined in (50) and (51) have shown that moderate values of q12 are
achieved for an arbitrary R12 if m�12m ¼ m�12ap:
m�12ap ¼ m�12Q ¼ k0g
J0Q ðkR12ÞuQ � H0Q ðkR12Þ
JQ ðkR12ÞuQ � HQ ðkR12Þ

mþ12ap ¼ �
k0g
Q

XQ

m¼0

H0mðkR12Þ � J0mðkR12Þr1m
HmðkR12Þ � JmðkR12Þr1m

ð65Þ
These coefficients, that do not depend on m, enforce w�12Q ¼ uQ and the averaged value on m of wþ12m equal to the one of r1m
(see definition (61) of w�12m). We observe on Figs. 12 and 13 (the worst results are obtained in TE) that (64) is approximately
verified. Also, mþ001ap; m�

00
12ap P 0: (49) is satisfied and uniqueness of the solutions is guaranteed in each SD.

6. Elliptical PEC cylinder with two subdomains

In this section, we consider the scattering problem by an elliptical PEC cylinder of surface S0 embedded in free-space and
illuminated by the plane wave eik0x. a0 (b0) denotes the half major (respectively minor) axis along x (respectively y) of S0 and

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

0 � b2
0

q
is the half interfocal distance. An elliptical interface S1 of half major and minor axes a1 P a0 and b1 P b0 par-

titions the computational domain into two concentric subdomains X1 and X2 with oX1 = S0 [ S1. S0 and S1 have the same
foci, so that:
b1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

1 � c2
q

ð66Þ
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Fig. 13. � = 5, l = 2, f = 1 GHz, R2 = 1.1m (d2 = 1.06k), R1 = R0 + (R2 � R0)/3, TE. Same caption as in Fig. 12.
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Let v > 0 and h 2 [0,2p] denote the radial and angular elliptic coordinates: x = ccoshvcosh, y = csinhvsinh. Adopting the same
conventions than in [25,26],
eik0x ¼
Xþ1
m¼0

ainc
m JemðvÞSemðhÞ
where Jem(.) is the even radial Mathieu function of the first kind, Sem(.) the even angular Mathieu function (to alleviate the
notations, the k0c dependence of these functions is suppressed throughout), and ainc

m ¼ im ffiffiffiffiffiffiffi
8p
p

=Nem where Nem ¼
R 2p

0 Se2
mðhÞdh

is defined by Eq. (4.9) in [26]. The exact scattered field us(v,h) writes [25]:
usðv; hÞ ¼
Xþ1
m¼0

bex
m HemðvÞSemðhÞ; bex

m ¼ �ainc
m =um

TM : um ¼
Hemðv0Þ
Jemðv0Þ

; TE : um ¼
He0mðv0Þ
Je0mðv0Þ

ð67Þ
Hem(.) is the even radial Mathieu function of the third kind, v0 = arctanh(b0/a0) the radial coordinate on S0, and the prime
denotes differentiation with respect to v. The exact RCS is RCS(h) = 10log[2pjrex(h)j2] with rexðhÞ ¼

P1
m¼0imbex

m SemðhÞ. Note
that
c! 0 : Jemðv0Þ !
ffiffiffiffiffiffiffiffiffi
p=2

p
Jmðk0a0Þ; Hemðv0Þ !

ffiffiffiffiffiffiffiffiffi
p=2

p
Hmðk0a0Þ

Je0mðv0Þ ! k0a0

ffiffiffiffiffiffiffiffiffi
p=2

p
J0mðk0a0Þ; He0mðv0Þ ! k0a0

ffiffiffiffiffiffiffiffiffi
p=2

p
H0mðk0a0Þ

SemðhÞ ! eimh

ð68Þ
and (67) yields (4) with � = l = 1 and R2 = a0 when the ellipse tends towards the circle of radius a0.

Because @n = @v/s(h) and @2
l ¼ @

2
h=s2ðhÞ with sðhÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

1 sin2 hþ b2
1 cos2 h

q
, the general expression of T± on S1, as defined in

(55), writes:
T� ¼ @v

sðhÞ � m�1 þ m�2
@2

h

s2ðhÞ

 !
ð69Þ
Let v = v1 on S1; then the closed-form solutions in X1 and X2 write
v0 6 v 6 v1 : u1ðv ; hÞ ¼
Xþ1
m¼0

½a1mJemðvÞ þ b1mHemðvÞ�SemðhÞ

v P v1 : u2ðv; hÞ ¼
Xþ1
m¼0

½ainc
m JemðvÞ þ b2mHemðvÞ�SemðhÞ

ð70Þ
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and, from the definition (7) of the TCs on S1 (with x‘ = 1) and the expression (69) of T±, we get:
Xþ1
m¼0

½a‘1mJe0mðv1Þ þ b‘1mHe0mðv1Þ�SemðhÞ

þ
Xþ1
m¼0

½a‘1mJemðv1Þ þ b‘1mHemðv1Þ� sðhÞmþ1 SemðhÞ þ
mþ2
sðhÞ Se00mðhÞ

� �

¼
Xþ1
m¼0

½ainc
m Je0mðv1Þ þ b‘�1

2m He0mðv1Þ�SemðhÞ

þ
Xþ1
m¼0

½ainc
m Jemðv1Þ þ b‘�1

2m Hemðv1Þ� sðhÞmþ1 SemðhÞ þ
mþ2
sðhÞ Se00mðhÞ

� �
Xþ1
m¼0

½a‘1mJe0mðv1Þ þ b‘1mHe0mðv1Þ�SemðhÞ

�
Xþ1
m¼0

½a‘1mJemðv1Þ þ b‘1mHemðv1Þ� sðhÞm�1 SemðhÞ þ
m�2
sðhÞ Se00mðhÞ

� �

¼
Xþ1
m¼0

½ainc
m Je0mðv1Þ þ b‘2mHe0mðv1Þ�SemðhÞ

�
Xþ1
m¼0

½ainc
m Jemðv1Þ þ b‘2mHemðv1Þ� sðhÞm�1 SemðhÞ þ

m�2
sðhÞ Se00mðhÞ

� �
Se00mðhÞ is the second order derivative of Sem(h) with respect to h. Taking into account (1) that implies a‘1m þ b‘1mum ¼ 0, mul-
tiplying the above identities by Sen(h) and integrating over h yields:
Fb‘1 þ a‘1 ¼ 0

Pþb‘1 þ a‘1 � Pþb‘�1
2 ¼ ainc

P�b‘1 þ a‘1 � P�b‘2 ¼ ainc

ð71Þ
x is a vector with components xm, and boldface letters are matrices defined as follows:
Fmn ¼ dmnum; P� ¼ ðJ�Þ�1H�

J�mn ¼ dmnJe0mðv1Þ �
S�mn

Nem
Jemðv1Þ; H�mn ¼ dmnHe0mðv1Þ �

S�mn

Nem
Hemðv1Þ

S�mn ¼
Z 2p

0
sðhÞm�1 SenðhÞ þ

m�2
sðhÞ Se00nðhÞ

� �
SemðhÞdh

ð72Þ
(dmn is the Kronecker symbol). When c ? 0, on account of (68), the expressions derived for the circular cylinder in the pre-
vious sections are recovered. Proceeding along the same lines as in Section 2.2, we set um ¼ ðb1m; a1m; b2mÞt ; f m ¼ ð0; ainc

m ; ainc
m Þ

t

and the exact global system with the unknowns on the interfaces obtained from (71) writes AU = F where A is no more block-
diagonal. Then, the block Gauss–Seidel iterative solution of the exact system AU = F with A = M � N and
M ¼
F I 0

Pþ I 0
P� I �P�

0
B@

1
CA N ¼

0 0 0
0 0 Pþ

0 0 0

0
B@

1
CA ð73Þ
(I is the identity matrix) is identical to the solution of (71): U‘ = M�1NU‘�1 + M�1F. The algorithm converges if and only if
q = maxjkj < 1 where k is an eigenvalue of M�1N.

To minimize q, we first truncate, similarly to what is done in Section 3.2.1, the series in (70) to Q + 1 terms (0 6m 6 Q)
and (44) with R2 = a0 (i.e. the radius of the circumscribed circle to S0) is still valid. Then we choose m�1 and m�2 to be h inde-
pendent so that the last identity in (72) writes:
S�mn ¼ Smnm�1 þ S00mnm
�
2 ð74Þ
If k0a0 is large enough, we have observed that the values of Smn/Smm and S00mn=S00mm are small if (i) m – n, (ii) m and n are large
enough (the corresponding modes are evanescent) and (iii) the excentricity of S1 is moderate (note that these matrices are
diagonal when S1 is a circle). If we make the approximation that matrices S± are diagonal, then A, M and N are block-diagonal
and we can apply the procedure employed in Sections 4.1.4 and 4.2 to derive easily the following values of m�1 ; m�2 , that
approximately minimize q. For the TC0 (m�2 ¼ 0), Pþmm ¼ 0 is the transpose of wþ3m ¼ 0 and, from (72) and (74), the transpose
of (52) is:
TC0� : mþ1 ¼ mþ1ap ¼ �
1
Q

XQ

m¼0

He0mðv1ÞNem

Hemðv1ÞSmm
m�1 ¼ m�1ap ¼ ik0 m�2 ¼ 0 ð75Þ
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Similarly, the transpose of (60) for the TC2 is
Fig. 14
truncat

Fig. 15.
standar
and sec
TC2� : m�1 ¼ m�1ap; mþ2 ¼ �
NeQ He0Q ðv1Þ
S00QQ HeQ ðv1Þ

þ mþ1ap
SQQ

S00QQ

" #
; m�2 ¼

i
2k0

ð76Þ
It is noteworthy that, as mentioned in Section 4.1.4, T+ in (69) with the above values of the coefficients can be used as an ABC.
Finally, q is numerically computed for the standard zero order TC (TC0: m�1 ¼ ik0; m�2 ¼ 0), the standard second order TC (TC2:
m�1 ¼ m31; m�2 ¼ m32 as defined in (54) where R3 = R1(h) = s3(h)/(a1b1) is the radius of curvature of S1), and the improved TCs de-
fined in (69), (75) and (76). It is important to note that q is computed from (72) with the exact non-diagonal matrices S±.

For a0 = 1m, b0 = 0.5m and f = 500 MHz, Fig. 14 shows that the RCS calculated from (67) with the series truncated at Q = 16
[n = 1.53 in (44)] is in excellent agreement with the one computed from an integral equation or Method of Moments (MoM)
code [27]. Fig. 15 plots q versus (a1 � a0)/k0 in TE (the creeping or evanescent waves are the strongest in this polarization, as
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illustrated by the oscillations of the RCS in Fig. 14) for the above mentioned TCs, the circle b0 = a0 = 1m and the above ellipse.
It shows that the improved TCs perform always better than the standard ones (better results, not shown, are obtained in TM).
We observe that q has similar values for the circle and the ellipse when a1 is large. This comes from the fact that, as a1 in-
creases, S1 tends towards the circle of radius a1. Also, in view of (24), we conclude that the easy to implement TC0± is suf-
ficient to obtain a rapid convergence rate. Finally, because the numerical values of mþ001ap in (75) are positive (5 < mþ001ap < 9:5),
the TC0± verify the uniqueness condition (49) for the above ellipse, unlike the TC2± for which mþ2ap is also found to be strictly
positive and, therefore, does not verify (58).

An important issue is the calculation of the various parameters m± when these TCs are implemented in an FEM. For the
circular case analyzed in Sections 4.1.4 and 4.2, the only unknown parameter is Q, that might be evaluated as follows. Let
R denote the radius of S0 (or S2 if a material coating is present). The mode of number Q is taken into account in an FEM cal-
culation if eiQh is correctly discretized on the circle of radius R. Assuming a uniform mesh of this circle, this entails that the
angular separation between two adjacent nodes is dh = 2p/(Qnh) where nh is the number of discretization points required to
represent eiQh over a period 2p/Q. If h denotes the length of an element, then h = Rdh, that implies
Q ¼ 2pR
hnh

ð77Þ
Since Q ’ k0R because of (44), (77) yields h ’ k0/nh, and nh ’ 10 generally guarantees a good accuracy. If S0 is not a circle, then
(77) still holds if R is the radius of the circumscribed circle to S0 (or S2), as verified by the results presented above for the PEC
ellipse. For an arbitrary shape of the interfaces, the simple solution that consists in substituting in (52) and (60) the local
radii of curvature to the radii of the interfaces is efficient only if these interfaces are almost circular. Indeed, for the ellipse
considered above, we have found that the value of q computed for the TC0± with mþ1 ¼ mþ1ap as defined in (52) where Q = 16
and R3 = R1(h) is close to the one plotted in Fig. 15 when a1 is large, but is larger than one when (a1 � a0)/k0 6 0.37.

Note that the more complex case of a coated elliptical PEC cylinder may be investigated by using the analytical solutions
defined, e.g., in [28], and following along the same lines. However, this is beyond the scope of this paper.

7. Conclusions

The study of this model problem has allowed to draw, or to confirm, the following results. First, from a general point of
view:

– The performances of the block Gauss–Seidel preconditioner utilized in [10] for the solution of the global system
increase with those of the TCs.

– The efficiency of the TCs (or, equivalently, the convergence rate of the DDM) decreases when the numerical accuracy
(here governed by Q) increases.

– It has been analytically verified on two examples that Després’ algorithm (Jacobi) converges less rapidly than the one
in [15] (Gauss–Seidel).

– For a given TC, the latter converges all the faster since losses in the material are large.
– The analytical expressions of q and the numerical results show that q may be reduced if S3 is moved farther away

from the object.
– The relaxed algorithm employed in [15,16] with standard Robin TCs is much less efficient than the non-relaxed one

implemented with the improved TCs.
– The impact on the convergence rate of an additional interface located inside the material has been quantified.
– Except when the interface is located in free-space, coefficients m�m in the approximate TCs presented in Sections 3 and

4 are polarization dependent. This entails that a TC, that relates, on an interface and in, e.g, an H-formulation, n � E
and n � n � H, involves a (2 � 2) diagonal operator when written in the orthonormal basis constituted by the vectors
tangent to the principal lines of curvature of the interfaces, similarly to the anisotropic second order TC implemented
in [16].

Second, regarding the TCs, and in order of increasing efficiency and difficulty of implementation:

– The zero order (local) TCs in [17,19] investigated in Section 3 are efficient only if m0 – 0. Uniqueness of the solutions in
each SD is guaranteed if m00 P 0, but sufficient conditions of convergence (SCC) have not been obtained when m0 – 0,
except when �0l

0
< 0, in which case convergence is fast, even for a lossless material.

– Like the above TCs, no SCC has been derived for the local ones presented in Section 4.1 with m+ – m�. If �;l 2 R,
uniqueness of the solutions is guaranteed in each SD for the approximate values, m�1;3ap, of m�1;3 that minimize q (this
issue remains open when �;l 2 C). By utilizing Debye’s asymptotic expansion, we have provided a geometric inter-
pretation of mþ3ap when S3 is outside of the evanescent region, that may also be used in a local ABC. Applying similar
asymptotic expansions when S3 is close to S2, or to coefficients m�1 involved in the TCs prescribed inside the material
may be considered, but this is beyond the scope of this paper.

– The non-local TC2s proposed in Section 4.2 (m+ – m� and are m dependent) speed up the convergence. However, nei-
ther the convergence, nor the uniqueness of the solutions in each SD, are guaranteed.
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Finally, the generalization to surfaces of more general shape has been tackled in Section 6 (elliptical cylinders), and an
estimation of Q from an FE mesh has been proposed. The extension of this approach to 3D applications using spherical
and, tentatively, spheroidal surfaces may be considered in a future work at the cost, however, of increased analytical and
computational complexities.
Appendix A. Proof of (35)

The first identity in (7) with x‘ = x yields
E‘ 6 j1�xj2E‘�1 þ jxj2
Z

S1

jTþe‘�1
2 j

2

x ¼ 1 : E‘ ¼
Z

S1

jTþe‘�1
2 j

2
ð78Þ
(34) and the two first identities in (7) give, on S1 and for i = 1,2:
jTþe‘�1
i j

2 ¼ jT�e‘�1
i j

2 þ 4R m�1eð‘�1Þ�
i

@ne‘�1
i

�

� �
ð79Þ
Because T�e‘�1
2 ¼ T�e‘�1

1 [see (7)], (79) implies, for i = 2,
jTþe‘�1
2 j

2 ¼ jT�e‘�1
1 j

2 þ 4R m�1eð‘�1Þ�
2

@ne‘�1
2

�

� �
Similarly, (79) with i = 1 entails
jT�e‘�1
1 j

2 ¼ jTþe‘�1
1 j

2 � 4R m�1eð‘�1Þ�
1

@ne‘�1
1

�

� �
and
jTþe‘�1
2 j

2 ¼ jTþe‘�1
1 j

2 þ 4R m�1eð‘�1Þ�
2

@ne‘�1
2

�
� m�1eð‘�1Þ�

1
@ne‘�1

1

�

� �
Finally, since E‘�1 ¼
R

S1
jTþe‘�1

1 j
2 [see (35)], (78) writes:
E‘ 6 ðjxj2 þ j1�xj2ÞE‘�1 þ 4jxj2Re m�1
Z

S1

eð‘�1Þ�
2

@ne‘�1
2

�
� m�1

Z
S1

eð‘�1Þ�
1

@ne‘�1
1

�

	 

ð80Þ
(the inequality becomes an equality when x = 1). On the other hand, on account of (1) and (33), the energy conservation
derived from Maxwell’s equations (see, e.g., [24]) entails, if E‘i ; H‘

i designate the difference with the exact fields of the fields
computed at iteration ‘,
A‘
1 ¼ k2

0

Z
X1

½��jE‘1j
2 � ljH‘

1j
2� ¼

Z
S1

e‘�1
@ne‘1
�

A‘
2 ¼ k2

0

Z
X2

½��jE‘2j
2 � ljH‘

2j
2� ¼ �

Z
S1

e‘�2
@ne‘2
�
� m1

Z
S2

je‘2j
2

ð81Þ
and (80), (81) imply (35).
Appendix B. Justification of (50) and (51)

We attempt to minimize the numerator ðw�1m �umÞðw
þ
1m � r1m Þ of km in (31). This is exactly realized by the first identity in

(27) provided that the denominator of m�1m, that is proportional to D(m),
TM : DðmÞ ¼ JmðkR1ÞHmðkR0Þ � HmðkR1ÞJmðkR0Þ
TE : DðmÞ ¼ JmðkR1ÞH0mðkR0Þ � HmðkR1ÞJ0mðkR0Þ

ð82Þ
is non-zero for 0 6m 6 Q. Then, m�1m varies continuously with m, and we have observed numerically that jw�1Q �uQ j ’ 0 min-
imizes q. Regarding mþ1ap, we have observed numerically that the average value in [0,Q] of mþ1m defined by (27) yields a good
approximation of the optimum value of mþ1 .

When there exists x 2 [0,Q] such that D(x) = 0, then m�1m displays a quasi-resonance in [0,Q] (m is an integer) and (50)
yields bad results. In this case, we have observed numerically that jwþ1Q � r1Q j ’ 0 minimizes q and that this minimum de-
pends but weakly on m�1 . As a consequence, we choose m�1ap ¼ ik0 that yields good results and satisfies (49).



B. Stupfel / Journal of Computational Physics 229 (2010) 851–874 873
For a lossy material, DðmÞ 2 C and it is unlikely that D(x) = 0 if x 2 [0,Q]. Conversely (�;l 2 R), because HmðxÞ ¼
JmðxÞ � iYmðxÞ;R½DðmÞ� ¼ 0 and D(m) may be zero for m	 jkjR0 < jkjR1. Actually, the asymptotic expansions of Hm(x) and
Jm(x) in O(x�1/2) and for m	 x yield [22]
TM : DðmÞ ’ 2i
pk

ffiffiffiffiffiffiffiffiffiffi
R1R0
p sin½kðR1 � R0Þ�; TE : DðmÞ ’ 2i

pk
ffiffiffiffiffiffiffiffiffiffi
R1R0
p cos½kðR1 � R0Þ�
and
DðmÞ ’ 0() TM : R1 � R0 ¼ pk=2; TE : R1 � R0 ¼ ð2pþ 1Þk=4; p 2 N ð83Þ
Appendix C. Derivation of (53)

If the sum in (52) is approximated by a integral on m, we get:
mþ3ap ’ �
k0

Q

Z Q

0

H0mðk0R3Þ
Hmðk0R3Þ

dm ð84Þ
From (44), Q ’ k0R2, and x = k0R3 > m + O(m1/3) "m 6 Q if x is large enough, in which case Debye’s asymptotic approximation
[22] can be used
HmðxÞ ’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
px sinjðmÞ

s
eix½jðmÞ cosjðmÞ�sin jðmÞ�þip=4 1þ igðmÞ

x sinjðmÞ þ Oðx sin jðmÞÞ�2
� �

sinjðmÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�m2=ðk0R3Þ2

q
gðmÞ ¼ 1

8
þ 5

24 tan2 jðmÞ

ð85Þ
that entails
H0mðxÞ
HmðxÞ

’ � 1

2x sin2 jðmÞ
þ i sinjðmÞ

" #
þ Oðx sin jðmÞÞ�2 ð86Þ
Reporting this expression into (84), we get (53).
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